Paper5 [논문 리뷰] 실무자를 위한 SAINT 논문 리뷰 SAINT 는 Riiid AI Research team 에서 2020년 2월 14일에 투고한 논문으로 학생의 지식 수준을 측정하는 목적의 Deep Learning Model 에 관한 내용이다.Transformer architecture 를 기반으로 Knowledge Tracing task 를 수행하였다.본 포스팅을 읽기 전에 필자가 이론편으로 업로드한 SAINT 와 SAINT+ 에 대해 먼저 확인하는 걸 추천한다.1. SAINT 논문 이론 링크 바로가기2. SAINT+ 논문 이론 링크 바로가목차1. 코드 재현을 위해 참고한 링크 소개2. 데이터셋 소개3. 데이터 Input 형태 확인4. 모델 구조5. 필자 리뷰 1. 코드 재현을 위해 참고한 링크 소개 먼저 필자가 재직하는 회사의 개발 서버는 cuda v.. 2025. 1. 18. EMNLP 2024 투고록 ① - 논문 작성 Process 금년도 EMNLP 학회에 논문을 투고했습니다~정확히는 EMNLP Industrial track 에 논문을 투고했는데요 !논문 작성부터 투고 및 마무리까지 어떤 과정으로 진행이 됐는지 기록을 남기고자 글을 올립니다~투고록은 총 3개의 게시글로 나눠 작성할 예정입니다.먼저 논문 작성 Process 에 대해 상세하게 다루겠습니다.EMNLP 학회에 논문을 투고하고자 하는 분들께 도움이 되었으면 좋겠네요 :) 논문 투고 일정출처: https://2024.emnlp.org/calls/industry_track/날짜일정설명24년 7월 18일논문 제출논문 제출 마감 날짜24년 9월 5~11일RebuttalsReviewer 와 저자의 토론 기간24년 10월 1일Accept 논문 발표학회 등록으로 채택된 논문 공지24년 .. 2024. 11. 2. [논문 리뷰]IN-CONTEXT PRETRAINING: LANGUAGE MODELING BEYOND DOCUMENT BOUNDARIES Large Language Model 을 사전학습 하기 위해서는 long input context 가 필요하다.최근 모델들은 대부분 8K 를 사용하는데 8K 만큼의 token 을 가진 Documents 는 적다.그래서 보편적인 방법으로 Document 를 이어붙여 8K 만큼 만들어준 뒤 모델을 학습시키는 방법을 사용한다.본 논문에서는 Document 를 어떻게 이어붙여야 성능 향상의 효과가 있는지를 실험한 내용이다.목차1. 논문 핵심 내용 요약2. 장점 & 단점 정리3. 코드 유무 확인 1. 논문 핵심 내용 요약LLM 학습 시 input contexts 구성할 때 문서의 type 을 고려하여 이어 붙여 모델을 학습하면 성능 향상 효과가 있다고 한다.본 논문에서는 수십억 개의 문서에서 반복 없이 모든 문서.. 2024. 10. 17. [논문 리뷰]Magpie: Alignment Data Synthesis from Scratch by Prompting Aligned LLMs with Nothing Synthesis datasets 생성을 위한 레퍼런스 체크를 하던 중 Magpie 논문을 확인했다.LLM 의 특징을 활용하여 데이터셋을 생성하는게 흥미로웠다.직접 몇 가지 테스트를 해봤는데 되긴 하더라.다만... Domain specific task 에 대해서는 아쉬움을 느낀다.그래도 기왕 논문을 확인했으니 기록을 남긴다.논문 링크: arxiv 바로가기목차1. 논문 핵심 내용 요약2. 장점 & 단점 정리3. 코드 유무 확인 1. 논문 핵심 내용 요약a. 문제 제기모델을 효과적으로 학습하려면 고품질의 정렬된 데이터 세트가 필수적이다.기존의 데이터 수집 및 annotation 방법은 시간과 비용이 많이 든다.정렬된 고품질의 데이터를 생성하는 솔루션인 Magpie 제안Magpie 는 합성 데이터 생성을 완전.. 2024. 10. 1. [논문 리뷰]Training Language Models to Self-Correct via Reinforcement Learning 하고 있는 프로젝트에 적용할만한 방법론을 찾는 중 해당 논문을 발견했다.결과적으로 적용하기 애매하다는 판단을 내렸지만 흥미로운 논문이었기에 기록한다.본 논문의 핵심 내용은 LLM 을 활용한 self-correction 학습법이다.구글 딥마인드에서 일주일 전 공개한 논문으로 강화학습을 활용한 언어 모델의 self-correction 능력 향상을 위한 연구이다.목차1. 논문 핵심 내용 요약2. 장점 & 단점 정리3. 코드 유무 확인 1. 논문 핵심 내용 요약a. 문제 제기LLM 은 올바른 답변을 할 수 있는 기본 지식이 포함되어 있지만 올바른 답변을 이끌어내지 못할때가 있다. 수학 증명의 경우, 증명할 수 있는 지식이 있지만 올바른 추론을 도출하지 못하곤 한다.이를 해결하기 위해 이전에 수행된 self-co.. 2024. 9. 26. 이전 1 다음 반응형