SentenceBERT2 SBERT → ONNX 변환 및 Test example 들어가며.. 지난 22년 7월 27일, ONNX 란 무엇인지에 관한 소개 글을 올렸었다. 해당 글은 본 블로그에서 항상 top-1 조회수를 차지했다. 필자 생각에는 많은 회사와 산업에서 인공지능 모델을 서빙하려 하기 때문에 많은 관심을 받았다고 생각한다. 이러한 관심에 힘입어 필자가 진행했던 Sentence-BERT 모델을 ONNX 변환시키는 간단한 예시를 포스팅하고자 한다. Sentence-BERT 특징 ONNX 변환 전, Sentence-BERT의 Input/Output 형태를 알아야 한다. 형태는 다음과 같다. Input: text (ex. '나는 어바웃타임 영화를 좋아합니다.') Output: n차원 vector (ex. [0.1754, 0.7749, ...] 보통 768 차원 사용) Input/.. 2022. 11. 9. [논문 리뷰] SimCSE: Simple Contrastive Learning of Sentence Embeddings 들어가며,, 비즈니스에 해당 논문 기술을 적용한다는 마인드로 논문 리뷰를 하기 때문에 논문 연구 결과 파악을 위한 리뷰와는 다소 차이가 있을 수 있음을 미리 말씀드립니다. Simple review for parper Supervised & Unsupervised SimCSE 제안 (21년 4월 발간) Unsupervised SimCSE (자체적으로 label을 만들어 줌) Positive pair: 동일한 문장 embedding layer에 동일한 문장을 넣어 drop out(p=0.1)을 통해 다른 embedding 값을 얻어줌 이러한 drop out 이 최소한의 data augmentation 이라고 함 (다른 방식 ex. 삭제, 대체, etc… 사용해 봤는데 drop out이 성능이 제일 좋았다고 .. 2022. 8. 31. 이전 1 다음 반응형